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Abstract. Numerical solutions of the equations describing flow of variably fluidized
Coulomb mixtures predict key features of dry granular avalanches and water-saturated
debris flows measured in physical experiments. These features include time-dependent
speeds, depths, and widths of flows as well as the geometry of resulting deposits. Three-
dimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse
shearing and cross-stream momentum transport occur where topography obstructs or
redirects motion. Consequent energy dissipation can cause local deceleration and
deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that
develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution
algorithm. The algorithm employs a gravity wave speed that accounts for different
intensities of lateral stress transfer in regions of extending and compressing flow and in
regions with different degrees of fluidization. Field observations and experiments indicate
that flows in which fluid plays a significant role typically have high-friction margins with
weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and
weak interior produces relatively steep-sided, flat-topped deposits. To simulate these
effects, we compute pore pressure distributions using an advection-diffusion model with
enhanced diffusivity near flow margins. Although challenges remain in evaluating pore
pressure distributions in diverse geophysical flows, Riemann solutions of the depth-
averaged 3-D Coulomb mixture equations provide a powerful tool for interpreting and
predicting flow behavior. They provide a means of modeling debris flows, rock avalanches,
pyroclastic flows, and related phenomena without invoking and calibrating rheological
parameters that have questionable physical significance.

1. Introduction

Three-dimensional (3-D) terrain can strongly influence the
dynamics of rock avalanches, debris flows, and pyroclastic
flows, but two difficulties have hindered development of flow
dynamics models that include 3-D terrain effects. The first
difficulty involves formulation of appropriate governing equa-
tions. Iverson and Denlinger [this issue] derive depth-averaged,
frame-invariant governing equations that describe time-
dependent flows of variably fluidized granular masses in which
inertial forces, internal shear and normal forces, and boundary
forces respond to 3-D boundary topography. The second dif-
ficulty, addressed in this paper, involves solving the governing
equations and testing model predictions. We obtain stable,
accurate numerical solutions of the hyperbolic, nonlinear gov-
erning equations by using a Riemann technique not previously
applied to granular flow problems. We test numerical predic-
tions against data from laboratory experiments in which pa-
rameter values, initial conditions, and boundary conditions are
independently constrained. Comparisons with data indicate
that the model predicts the behavior of both dry grain flows
and water-saturated debris flows with considerable success.

Section 2 describes our numerical method for solving the
variably fluidized grain flow equations of Iverson and Denlinger

[this issue]. The method recasts the equations in terms of
Riemann problems and employs a Harten-Lax-vanLeer-
Contact (or HLLC) approximate Riemann solver [Toro, 1997]
to generate solutions referenced to a fixed 3-D coordinate
system. The Riemann method differs significantly from La-
grangian finite difference methods used in previous computa-
tions of dry granular avalanche motion [e.g., Savage and Hutter,
1989, 1991; Greve et al., 1994] and debris flow motion [Iverson,
1997a, 1997b]. Advantages of the Riemann formulation are
greatest where multidimensional topographic influences are
strongest [Denlinger et al., 1998]. For example, the Riemann
formulation can address situations where flows on steep slopes
encounter abrupt corners or constrictions or even divide and
reunite as they pass around islands. The dynamics of such flows
cannot be addressed in a satisfactory way by models that lack
multidimensional momentum transport, no matter how com-
plex a rheology is invoked [e.g., Hungr, 1995].

Section 3 describes two types of physical experiments that
test our numerical predictions. One type of experiment, con-
ducted using a miniature flume, involved flows of 290 cm3

(0.00029 m3) of dry, well-sorted sand. The sand discharged
suddenly through gates of differing widths, then descended an
inclined plane and stopped on a horizontal runout surface.
Results of these experiments illustrate the conspicuous influ-
ence of 3-D path geometry on flow dynamics. The second type
of experiment involved debris flows consisting of ;10 m3 of
poorly sorted, water-saturated sediment released at the U.S.
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Geological Survey (USGS) debris flow flume [Iverson et al.,
1992]. Results of these experiments reveal the importance of
interactions between nearly liquefied, fine-grained debris flow
bodies and better drained, coarser-grained debris flow snouts.

2. Computational Methods
We describe our method for solving the depth-integrated

equations of motion derived by Iverson and Denlinger [this
issue], which we refer to here as the debris flow equations
(DFE). These equations for conservation of mass and linear
momentum are written in terms of a local, orthogonal Carte-
sian coordinate system in which the z coordinate is normal to
each small (cell size) patch of ground. In general, this local
coordinate system is rotated relative to the elevation, latitude,
and longitude of the Earth’s surface.

2.1. Governing Equations

In each local coordinate system (i.e., each cell or facet) the
DFE may be divided by the mixture bulk density r and written
in vector form as
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In this set of equations, h is the flow depth normal to the local
bed surface, v# x is the depth-averaged velocity in the x direc-
tion, v# y is the depth-averaged velocity in the y direction, gx, gy,
and gz are the components of gravitational acceleration in the
x , y , and z directions, wint is the angle of internal friction of the
granular solids, wbed is the friction angle of grains contacting
the bed, y f is the fluid volume fraction (i.e., porosity), m is the
pore fluid viscosity, and l is the ratio of the basal pore fluid
pressure ( pbed) to the total basal normal stress. The lateral
stress coefficient ka/p is derived by solving for the lateral thrust
induced by the weight of a layer of Coulomb material that
simultaneously slides along a rigid bed and yields internally
[Iverson, 1997a]. Finally, ux and uy are the x and y components
of the local bed slope (measured in radians from the horizon-
tal).

In (6) and (7) the terms involving space derivatives of bed
slope account for all effects of bed curvature (e.g., ­ux/­ x 5
1/rx, where rx is the x component of the local radius of cur-
vature). These curvature terms represent the effects of coor-
dinate transformations that show how changes in bed slope
redirect x and y momentum components to keep them parallel
to the bed [e.g., Savage and Hutter, 1991]. Redirection of the x
and y momentum components influences basal normal stresses
and thereby produces changes in basal frictional resistance and
flow thickness [Iverson and Denlinger, this issue]. Where finite
changes in bed slope occur between adjacent computational
cells, we use the approximation ­ux/­ x ' tan (Dux/ 2)/
(Dx/ 2) to account for bed curvature (Figure 1).

2.2. Riemann Formulation

To solve the DFE using a Riemann method, we compute the
speeds and directions of elementary waves that determine
fluxes of the conserved variables U by propagating information
about U in space and time [e.g., Toro, 1997]. To characterize
these mathematical waves, we first use the chain rule to rewrite
the DFE in terms of Jacobian matrices A and B of the flux
vectors F(U) and G(U). Then (1) becomes

Figure 1. Schematic illustrating geometric relationships be-
tween a continuous radius of bed curvature r and the discrete
units of cell length Dx and bed slope Du used in numerical
calculations.
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and c is the speed of ideal gravity waves given by

c 5 Î@~1 2 l!ka/p 1 l# g zh . (12)

This definition of the gravity wave speed c fundamentally
distinguishes the DFE from standard shallow-water equations
like those analyzed by Vreugdenhil [1994]. As defined in (12), c
includes the effects of Coulomb friction and denotes the max-
imum rate of information propagation due to lateral stress
transfer in the grain-fluid mixture. Consequently, (12) implies
that regions of compressing flow (with generally large values of
ka/p) propagate information faster than regions of extending
flow (with generally small values of ka/p). For the special case
of a completely liquefied Coulomb mixture (l 5 1), the gravity
wave speed defined by (12) reduces to the standard shallow-
water expression and lacks dependence on compression and
extension of the flow.

The Jacobian matrices A and B defined in (11) have real
eigenvalues, making the DFE fully hyperbolic. The matrices
are singular when the speed of the flow equals the gravity wave
speed c , in which case the flow is critical. (Despite enormous
dissipative effects of Coulomb friction, critical flow is common
in debris flows and avalanches because flows ,10 m thick
commonly occur on steep slopes and achieve speeds .10 m/s.)
A straightforward analysis yields the following eigenvalues for
A and B, which describe the local speeds of waves in the x and
y directions:

A:
a~1! 5 v# x 1 c
a~2! 5 v# x

a~3! 5 v# x 2 c
B:
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b~2! 5 v# y
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(13)

The local directions of waves with simultaneous x and y com-
ponents are given by the corresponding eigenvectors of a di-
agonalizable composite matrix Q, where Q 5 Anx 1 Bny and
nx and ny are the components of any unit vector n in the x-y
plane [Toro, 1997]. The right and left eigenvector matrices are
the same as those for shallow-water equations (with a different
definition of the gravity wave speed c , as specified by (12)) and
are given by Alcrudo and Garcia-Navarro [1993, equation 9].
Together these eigenvectors and eigenvalues provide the in-
formation needed to propagate fluxes of mass and momentum
in the correct direction at the correct speed.

2.3. Numerical Integration

Once the wave directions and speeds are known, we inte-
grate the DFE numerically using two-step, finite volume pro-
cedure. In the first step an intermediate solution is obtained by
solving the homogeneous part of (1). Thus we temporarily set
S 5 0, then integrate (1) over a finite control volume V and
apply Gauss’ theorem to convert volume integrals to surface
integrals, yielding
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Here the volume integral uses the average U within each com-
putational cell, although U may vary nonlinearly within any
cell. The area integrals sum the composite Riemann fluxes Fc

and Gc normal to the surfaces that form cell walls. In general,
cells may have any number of sides, but here we use quadri-
lateral cells on a regular grid aligned with the x and y coordi-
nates. The discussion below focuses on the x component of the
Riemann flux (Fc) in a multidimensional flow field, but anal-
ogous equations apply to the y component (Gc).

We use the HLLC approximate Riemann solver to calculate
Riemann fluxes across each cell wall as described by Toro
[1997, chapter 10]. (The Riemann flux is the contribution from
each cell wall to the cell-averaged flow vector during the time
interval dt .) The evolution of the cell-averaged flow vector
may be written in terms of waves (Figure 2). Three wave
speeds are needed. The speeds SR and SL bound the wave field
across the cell wall for the time interval dt and define the
domain of influence of initial variables at cell walls. The speed
SM determines whether momentum fluxes across cell walls are
directed from the right or the left. By applying the integral
form of the conservation laws (14) over appropriate control
volumes, Toro [1997, chapter 10] obtains the HLLC numerical
approximation of the composite Riemann flux on a cell wall,

Fcu i11/ 2 5 5
FL, 0 # SL

FLM, SL # 0 # SM

FRM, SM # 0 # SR

FR, 0 $ SR

(15)

where
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FR 5 F~U i11! , (16d)

UL 5 U i, (16e)

UR 5 U i11, (16f)

Figure 2. Schematic of the border between neighboring
computational cells, illustrating time and space coordinates
and waves that govern fluxes across cell edges.
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Here i is a spatial index, which indicates that Fcu i11/ 2 repre-
sents the flux normal to the boundary separating cells i and i 1
1. Subscripts R and L designate quantities on the right and left
sides of a cell wall.

To calculate the wave speeds SL, we first define the quan-
tities
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In these equations, subscripts R and L refer to right- and
left-going waves emanating from a cell boundary and M refers
to the middle region (in space-time) between these waves
(Figure 2). For nonzero values of FR and FL (i.e., for nonzero
flow depths to the left and right of the cell) the wave speeds are
given by [Toro, 1997]

SR 5 v# xuR 2 cRqR, (19a)
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These speeds govern the composite Riemann flux at the edges
of most computational cells. Exceptions occur at the front of a
propagating surge or the tail of a receding flow. We consider
such situations in section 2.4.

The second step of the numerical integration accounts for
the effect of the nonzero source term S by substituting the
intermediate solution for U obtained from the HLLC Riemann
solver into the ordinary differential equation

dU/dt 5 S . (20)

We integrate (20) using an explicit Euler method that gives
first-order accuracy for spatial and temporal gradients in the
flow [Harten et al., 1983; Toro, 1997, chapter 10]. We tested the
convergence of the method by computing solutions using four
different cell sizes, in each case halving the cell size. The
solutions we report here are for the largest cells that produced
no change in results with continued cell size reduction. Limits
on the maximum size of time steps Dt in these integrations are
identified by a von Neumann stability analysis [Toro, 1997, p.
163], which indicates that the Courant-Fredrichs-Lewy number
(defined here as CFL 5 [(v# x

2 1 v# y
2)1/ 2 1 c]Dt/Dx , where Dx

is the minimum grid cell size) must be less than or equal to one
to ensure numerical stability. Accordingly, in our computations
with a fixed grid we alter the time step size as flow proceeds
and values of c , v# x, and v# y evolve. At any time we identify the
maximum value of [(v# x

2 1 v# y
2)1/ 2 1 c] within the flow domain,

and with this value adjust Dt so that CFL 5 0.8 for the next
time step. This methodology yields first-order solutions that
are economical and suitably accurate, as we demonstrate by
tests against experimental data described below.

2.4. Flow Front Propagation

Advancing or receding flow fronts occur wherever zero flow
depth exists adjacent to a cell. Our means of computing the
speeds of such fronts follows a rationale like that of Toro [1997,
p. 140] for an analogous problem involving vacuum fronts in
shock tubes. Here we focus on the equation governing the
speed of a flow front advancing in the right-hand (positive x)
direction, but analogous equations apply to advancing and
receding fronts in all directions.

A fundamental difficulty results from lack of definable wave
speeds in advance of a flow front. Owing to the ambient con-
dition h 5 0, SR and SM as defined in (19a) and (19b) do not
exist in advance of a flow front, and right-hand Riemann fluxes
cannot be calculated. However, the left-going wave emanating
from the flow front (with speed given by SL in (19c)) contains
information that constrains the front speed. Mass and momen-
tum conservation dictate that this wave propagates in a manner
that preserves a quantity (known as a Riemann invariant) de-
fined by

IL 5 v# xuL 1 2cL (21)

for the case Sx 5 0. Moreover, near the flow front (where h 3
0 and y f 3 0) it is reasonable to assume that Sx 3 0, and we
therefore assume that IL is approximated well by (21). We
then equate values of IL at the flow front (denoted by subscript
zero) and at any other point just upstream of the flow front,
yielding

v# xu0 1 2c0 5 v# xuL 1 2cL. (22)

However, near the flow front the gravity wave speed c ap-
proaches zero because h 3 0, and precisely at the front, c0 5
0 exactly. Substituting this value in (22) and combining the
result with (21) yields

v# xu0 5 IL, (23)

which indicates that the speed of the mixture at the flow front
equals the Riemann invariant associated with the left-going
rarefaction wave emanating from the flow front. Moreover,
since the mixture thickness tapers to zero at the flow front, the
mixture speed equals the speed of the front itself. Effectively,
the speed of the right-going front is dictated by the rate at
which material discharges from the left.

2.5. Basal Pore Pressure Distributions

The depth-averaged DFE include no variations in any quan-
tity through the flow thickness: a simplification that presents
challenges for simulating the influence of evolving pore fluid
pressures. Such evolution is important in geophysical flows
where fluid forces may play a significant role. Iverson and
Denlinger [this issue] describe a model in which pore pressure
simultaneously advects downstream with the flowing debris
and diffuses normal to the bed. Only the computed basal pore
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pressure (indicated by l) enters depth-averaged calculations of
flow dynamics. Here, in our numerical simulations of water-
saturated debris flows we employ the advective diffusion model
and assume that pore pressures are hydrostatic until the debris
begins to move. When movement commences, we specify that
pore pressures rise linearly over the course of 1 s to a value l 5
0.9 and then begin to decay diffusively as they advect down-
stream. This behavior mimics behavior measured in debris flow
initiation experiments [Iverson et al., 1997; Reid et al., 1997].

In addition to our formulation for pore pressure advection
and diffusion we employ a kinematic criterion to identify re-
gions of enhanced pore pressure depletion near flow fronts.
Experiments and field observations indicate that grain size
segregation causes accumulation of coarse clasts and low pore
pressures near fronts of debris flow surges [Iverson, 1997a]. To
simulate this behavior, we assume that a coarse-grained front
with high pore pressure diffusivity is present wherever one or
more the following kinematic conditions are satisfied:

v# x . 0, ­h/­ x , 0, (24a)

v# x , 0, ­h/­ x . 0, (24b)

v# y . 0, ­h/­ y , 0, (24c)

v# y , 0, ­h/­ y . 0. (24d)

These criteria indicate that flow thickness diminishes in the
downstream direction. (To minimize the influence of numeri-
cal fluctuations in computations, we use a threshold value
0.001 to approximate zero thresholds for u­h/­ x u and u­h/­ y u
in (24a)–(24d).) This simplistic treatment of the effects of grain
size sorting on flow front dynamics represents a rough approx-
imation of the processes in nature; it causes dissipation of flow
front pore pressures commensurate with data and observa-
tions, and it can be implemented in a depth-averaged model.

More sophisticated analyses of grain size segregation, pore
pressure dissipation, and flow front dynamics could be
achieved by developing three-dimensional models without
depth averaging.

3. Experimental Methods
To test our numerical predictions, we use data from small-

scale experiments with flows of dry sand and large-scale exper-
iments with flows of water-saturated sand and gravel. Table 1
lists five dynamic scaling parameters that must be considered in
designing and interpreting such experiments [Iverson and Den-
linger, this issue]. Three of these scaling parameters, the Savage
number NS, Bagnold number NB, and fluidization number Nf,
reflect grain-scale processes and indicate whether Coulomb
mixture theory provides an adequate description of a particular
grain-fluid flow. The other two scaling parameters, NR and Np,
reflect continuum-scale processes in flows that are described
adequately by depth-averaged Coulomb mixture theory.

Values of NR and Np guide design and interpretation of
experiments with Coulomb mixtures by characterizing the de-
gree to which fluid stresses influence the behavior of the mix-
ture as a whole. The parameter NR is similar to a conventional
Reynolds number but differs in that it describes the character-
istic ratio of inertial stresses in the mixture to viscous stresses
in the fluid phase alone. The parameter Np describes the
tendency for persistence of high pore fluid pressures that re-
duce intergranular stresses and transfer stresses to the fluid
phase. Values of NR or Np of order 1 or smaller indicate that
pore fluid viscosity or pressure may play a key role in flow
dynamics. Values of NR and Np much greater than 1 indicate
negligible importance of fluid viscosity and pressure and de-
note dry granular avalanche behavior like that investigated by
Savage and Hutter [1989, 1991], Greve et al. [1994], and Wieland
et al. [1999].

Table 1. Material Properties and Dimensionless Parameters for Physical Experiments and
Model Predictionsa

Property or Parameter Granular Avalanche Experiments Debris Flow Experiments

Basal friction angle wbed, deg 29 6 1.4 28 6 0.7
Internal friction angle wint deg 40 6 1.0 42 6 0.4
Solid volume fraction ys 0.6 (loose static state) 0.6 (static and dynamic states)
Fluid volume fraction y f 0.4 (loose static state) 0.4 (static and dynamic states)
Fluid viscosity m, Pa s 2 3 1025 (air) 0.1 (muddy water)
Solid density rs, kg/m3 2650 (quartz) 2700 (quartz, feldspar, etc.)
Fluid density r f, kg/m3 1 (air) 1200 (muddy water)
Mixture bulk density r, kg/m3 1600 2000
Typical grain diameter d, m 0.0005 (medium sand) 0.01 (gravel)
Hydraulic permeability k, m2 10211 (estimated for loose sand) 10211 (permeameter tests)
Hydraulic diffusivity D, m2/s 0.05 (estimated for loose sand) 1024 (consolidation tests)
Initial pore pressure ratio k 0 0.9
Average shear rate ġ, s21 ;50 (mean velocity 4 H) ;50 (mean velocity 4 H)
Maximum flow thickness H, m 0.01 0.2
Maximum flow length L, m 0.5 100
Aspect ratio « 0.02 0.002
Savage number NS 0.006 0.2
Bagnold number NB 7000 600
Fluidization number Nf 0.009 7 3 1028

Quasi-Reynolds number NR 5 3 106 3 3 105

Pore pressure number Np 100 0.008

aFriction angle data include means and standard deviations computed from 10 to 15 tipping table
measurements with each type of material. For other parameters we list appropriate average values taken
from Iverson [1997a], Iverson et al. [1997], Major et al. [1997], and Freeze and Cherry [1979]. To compute
Bagnold numbers, maximum solid volume fractions were assumed equal to 0.7 [cf. Iverson and Denlinger,
this issue].
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For cases in which fluid effects are negligible, experiments
with dry granular avalanches can be conducted at any conve-
nient scale because the depth-averaged Coulomb mixture the-
ory reduces to a form that uses only the friction angles (wbed,
wint) and system geometry as input. Of course, the scale of
granular avalanche experiments must be large enough to sat-
isfy the continuum assumption and to minimize the effects of
microscopic forces (such as those due to electrostatic charges)
that are not considered in the theory but which might influence
macroscopic mechanics.

For cases in which pore fluid effects are significant, great
care must be taken in designing and interpreting experiments
intended to simulate large-scale geophysical flows. Commonly,
geophysical flows have large values of NR but small values of
Np, indicating that viscous stresses are negligible but pore
pressure effects are not [Iverson and Denlinger, this issue]. Such
conditions can be impossible to achieve in miniature experi-
ments with sediment-water mixtures because NR decreases but
Np increases as flow size decreases. Indeed, miniature flows of
sediment-water mixtures might exhibit significant viscous ef-
fects but little pore pressure effect, exactly the opposite of most
large-scale geophysical flows. Miniature flows may also exhibit
effects due to surface tension at air-water interfaces. Better
similitude can be achieved by conducting experiments with
sediment-water mixtures at scales large enough to approximate
geophysical conditions.

3.1. Small-Scale Granular Avalanche Experiments

Our granular avalanche experiments employed a rectangular
flume with a bed surface inclined 31.48 adjoined to a horizontal
runout surface by a curved section with a 10-cm radius of
curvature (Figure 3). In each experiment, 290 cm3 of loosely
packed, well-sorted, well-rounded dry quartz sand with grain
diameters ;0.5 mm was placed behind a vertical wall posi-
tioned 37.5 cm upslope from the break in slope. The sand was
graded to produce a level surface, then discharged suddenly by
opening a spring-loaded gate. In one type of experiment the
gate spanned the entire flume width (20 cm), and in a second
type it spanned a slot 4 cm wide in the center of the flume. The
narrow gate caused marked convergence and divergence of
flow as sand passed through the gate, which revealed the im-

portance of multidimensional momentum transport and inter-
nal shearing on planes normal to the flume bed.

In each dry sand experiment the flume bed was surfaced with
Formica that had a consistent, hard, moderately smooth finish
and little tendency to adsorb water vapor or hold electrostatic
charges. Vertical sidewalls of the flume were constructed of
painted aluminum and clear polycarbonate. Table 1 summa-
rizes values of static bed friction angles and internal friction
angles measured using tipping-table tests of sand sliding across
the Formica, painted aluminum, and polycarbonate surfaces
and of sand shearing internally. Table 1 also lists values of
other pertinent sand properties and values of NS, NB, Nf, NR,
and Np calculated for these experiments. Large values of NR

and Np indicate that fluid stresses were negligible and that the
small-scale experiments were appropriate for investigating mo-
tion of dry granular avalanches.

Several replicates of each sand flow experiment were re-
corded on time-stamped videotapes and still-frame photo-
graphs. Examination of videotapes and photographs indicated
that the timing and extent of sand flow were nearly identical in
replicate experiments and that differences were not resolvable
using our measurement techniques. Therefore we present data
from only one experiment of each type.

A noninvasive optical shadowing technique was used to
measure sand thicknesses during and after flow. To produce
shadows, each experiment was illuminated directionally by a
1000-W halogen lamp that cast light obliquely on the flume
bed. Filming and videotaping were performed from a different
oblique angle (Figure 3). Shadowing rods 1.5 mm in diameter
were positioned horizontally 2–3 cm above the flume bed so
that they spanned the width of the flume at 2-cm intervals
along the flume’s length. As viewed on videotapes and photo-
graphs, shadows cast by the rods upon the underlying sand
were offset by differing distances depending on the sand thick-
ness. Calibrations that related observed shadow offsets to sand
thicknesses along the length of the flume were obtained by
placing static objects of known thickness under the shadow
bars and measuring the resulting offset. These empirical cali-
brations eliminated the need to consider complex optical ef-
fects that could bias interpretation of shadow offsets.

In each experiment, sand thicknesses normal to the flume
bed were inferred from shadow offsets measured on digitized
35-mm photographs taken at intervals ;0.2 s with shutter
speeds of 1/1000 s. Photographs provided better optical reso-
lution than freeze-frame video images, but correlation with
videotapes was used to establish the timing of photographs due
to the superior video time stamp resolution (0.01 s). Shadow
offsets were measured along the shadow lines at 1-cm intervals
or at smaller intervals where sharp gradients in sand thickness
occurred. Inferred sand thicknesses were then contoured using
commercial software. Comparison of contoured sand thick-
nesses with direct measurements of sand thicknesses in static
deposits indicated that errors due to shadow measurements
and contouring were generally ,1 mm.

3.2. Large-Scale Debris Flow Experiments

Experiments with debris flows of ;10 m3 of water-saturated
sand and gravel (containing ,2% silt and clay by weight) were
conducted at the USGS debris flow flume, a rectangular con-
crete chute 95 m long and 2 m wide that slopes 318 throughout
most of its length and flattens at its base to adjoin an uncon-
fined runout surface that slopes 21

2
8 (Figure 4). Details of the

flume facility and experimental methods have been reported

Figure 3. Schematic of the miniature flume used to conduct
dry sand flow experiments. Distances between light source,
camera, and flume are ;2 m and are not shown to scale.
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elsewhere [Iverson et al., 1992; Iverson and LaHusen, 1993;
Iverson, 1997a; Major and Iverson, 1999]. Here we report re-
sults of two experiments that differed only in the distance of
flow confinement by rigid channel walls. In one experiment
(April 19, 1994) the flow was unconfined as it crossed the
runout surface. In the other experiment (July 24, 1995) the
flow was confined by concrete panels that effectively extended
the flume length 7.4 m across the runout surface. Differing
distances of confinement revealed the effects of flow front
friction and lateral spreading on debris flow dynamics and
deposition.

The mechanics of debris flows are more complex those that
of dry granular avalanches owing to the presence of a relatively
viscous, dense fluid phase composed of water and suspended
fine sediment [Iverson, 1997a]. Values of the dimensionless
parameters NS, NB, Nf, NR, and Np indicate that our flume
debris flows behave as Coulomb mixtures in which viscous
stresses are small but pore fluid pressures are significant (Table
1).

With one exception, independent measurements established
the values of all material properties in our experiments (Table
1) [cf. Iverson, 1997a; Iverson et al., 1997; Major et al., 1997].
The exception arose from sorting and selective transport of
large clasts, which produced accumulations of coarse sediment
at debris flow snouts that consequently sustained little or no
positive pore fluid pressure [Iverson, 1997a, 1997b; Major and
Iverson, 1999]. We were unable to measure the hydraulic dif-
fusivity of these coarse-grained snouts owing to their very rapid
loss of pressure, but the diffusivity clearly exceeded the value
D 5 1024 m2/s measured for our unsorted debris flow slurries.
For testing model predictions we assigned coarse-grained
snouts a hydraulic diffusivity D 5 1022 m2/s. This value causes
pore pressure depletion within a few seconds in flows ;0.1 m
thick, consistent with qualitative observations.

In each experiment, measurements of flow depths and
speeds and deposit locations and geometries tested model pre-
dictions of debris flow behavior. Laser and ultrasonic ranging
devices measured flow depths at high frequencies (20–1000
Hz) as debris flows passed instrumented cross sections 2 m,
33 m, and 67 m downslope from the gate at the flume head.
The same measurements constrained flow speeds by indicating
travel times between the gate and the three instrumented cross
sections. Additional measurements of flow speed between
cross sections and in the runout area were obtained from
time-stamped videotapes synchronized with the data acquisi-
tion system. Photographs, videotapes, and topographic surveys
of ;100 points established the position and geometry of debris
flow deposits. Topographic surveys yielded isopach maps that
provide quantitative comparisons with model predictions of
runout distances and deposit geometries.

4. Results
Figures 5–9 illustrate comparisons between computational

and experimental results. These comparisons help evaluate the
most important aspects of model performance. For small-scale
experiments with dry sand we compare isopach maps that show
distributions of sand thickness (measured normal to the bed)
before, during, and after each flow. Computations to predict
the results of these experiments used square grid cells 0.25 cm2

(0.000025 m2) in size, yielding roughly 6000 cells for the flow
domain. For large-scale experiments with water-saturated de-
bris we compare depth-time graphs for flow along the flume

centerline at three cross sections, and we compare isopach
maps of deposit geometries as well as qualitative observations
of deposit liquefaction. Computations to predict the results of
these experiments used square grid cells 0.0625 m2 in size,
yielding roughly 6000 cells for the flow domain.

4.1. Dry Sand Flows

Figure 5 depicts results for the dry sand flow released sud-
denly from behind a vertical gate that spanned the flume width.
The flow accelerated, elongated, and thinned rapidly after the
gate opened. When the leading edge of the flow reached the
break in slope 37.5 cm downslope from the gate, only a small
percentage of the sand was still evacuating the area upslope
from the gate. Sand that first reached the depositional area was
pushed forward only slightly by subsequently arriving sand, and
deposition was complete 1.5 s after flow release. Videotape
recordings indicate that motion of the sand involved a combi-
nation of basal sliding and internal deformation. Effects of
flume sidewall friction appeared slight except in the source
area behind the gate. Sand adjacent to sidewalls evacuated the
area behind the gate somewhat more slowly than did sand
closer to the flume centerline, and sand along the sidewalls was
the last to be deposited. However, this sidewall effect and
multidimensional momentum transport appeared to have little
effect on flow and deposition.

Figure 5 indicates that predictions of the numerical model fit
the observed timing and depth of sand flow and the geometry
of the resulting deposit quite well. Model predictions of the
timing and total travel distance of the flow front and of the
final deposit geometry are particularly accurate. Predictive er-
rors involve mostly the details of individual isopach shapes and
locations, which are irregular in the experimental results but
smooth in the model predictions.

Figure 6 illustrates results for conditions similar to those
depicted in Figure 5 but with the 20-cm-wide gate replaced by
the 4-cm-wide gate. The narrow gate impeded sand discharge
and caused pronounced cross-slope momentum transport as
the flow converged and then diverged while passing through
the gate opening. Frictional energy dissipation associated with
this convergence and divergence caused the flow to move as a
slower, thinner sheet than in the wide-gate experiment (com-
pare Figure 5). Completion of deposition required ;5 s with
the narrow gate, in contrast to 1.5 s required with the wide
gate. With both gates, deposition was focused at the break in
slope at the 100-cm mark shown in Figures 5 and 6. However,
discharge through the narrow gate produced a deposit with an
upward tapering wedge shape, in contrast to the more blunt

Figure 4. Schematic of the U.S. Geological Survey (USGS)
debris flow flume, used to conduct experiments with water-
saturated sand-gravel mixtures.
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Figure 5. Maps comparing experimental data and model predictions for flow of dry sand released instan-
taneously from behind a wide (20 cm) gate in the small flume (Figure 3). The gate opened at time zero.
Contours depict 1-mm isopachs of sand thickness normal to the bed.
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Figure 6. Maps comparing experimental data and model predictions for flow of dry sand released instan-
taneously from behind a narrow (4 cm) gate in the small flume (Figure 3). The gate opened at time zero.
Contours depict 1-mm isopachs of sand thickness normal to the bed.
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deposit produced with the wide gate. The wedge shape re-
sulted from sediment accumulation during the last stages of
discharge through the narrow gate. More importantly, the nar-
row gate left a considerable mass of static sand stranded in
pyramid-like heaps against the upslope side of the barrier at
62.5 cm (Figure 6). This sand was restrained by Coulomb
friction that resisted shear transverse to the flume slope. Anal-
ogous resistance does not occur in one-dimensional flows of
granular solids or in flows of liquids without yield strength.

Figure 6 indicates that model predictions compare well with
results of the narrow-gate experiments. Flow timing, depth,
and depositional pattern all match approximately. The largest
discrepancies between model predictions and data occur as a
result of very thin flow (;1 grain diameter thick), where the
Coulomb continuum model is inappropriate. For example,
much of the upward tapering margin of the measured deposit
resulted from accumulation of saltating grains, which are not
simulated by the model. Despite such discrepancies the final
deposit shape and time of deposition shown in Figure 6 exhibit
relatively small errors. Model predictions for the narrow gate
leave sand stranded behind the vertical barrier at 62.5 cm, just
as measured in experiments. However, the model predicts that
the heap of sand behind the gate undergoes smoothing and
stretching due to numerical creep that results from imperfect
balancing of static driving and resisting forces. The same nu-
merical creep allows a trickle of sand to escape from behind
the barrier even after deposition has effectively ceased, but this
shortcoming has little effect on the final deposit geometry.

4.2. Water-Saturated Debris Flows

Figures 7–9 compare model predictions with data from
large-scale debris flow experiments. Figures 7 and 8 compare
computed stage hydrographs with those measured during two
experiments in which ;10 m3 of sand and gravel (with 1–2%
silt and clay by dry weight) was placed as a triangular wedge
against a vertical gate 2 m high, saturated with water, and then
suddenly released. Although the details of flow behavior varied
between these two experiments, overall patterns of flow speed
and depth were quite consistent. The match between data and
model predictions of flow speeds and depths is reasonably
good in most locations and reflects the overall unsteady, non-
uniform behavior of the surging flows. The most significant
predictive errors occur for cross sections 2 m downslope from
the gate. These errors are not surprising, because considerable
acceleration normal to the bed develops as the flow thins
rapidly just downslope from the gate. Our depth-averaged
model does not account for reaction forces exerted by the
static bed in response to this slope-normal acceleration, and it
consequently predicts too much thinning just downslope from
the gate.

Model predictions of flow behavior farther downslope are
more accurate. When debris flows reach cross sections 33 m
and 67 m from the gate, their primary waveforms have mark-
edly accelerated, elongated, and attenuated. Flow front depths
stabilize when they attain values ;0.1 m, because unliquefied
accumulations of coarse clasts at flow fronts provide resistance
that impedes further thinning. Model predictions match theFigure 7. Comparison of measurements and model predic-

tions of flow depths at three cross sections in a water-saturated
debris flow at the USGS flume, April 21, 1994. Downslope
distance is measured from the base of the gate at the flume
head, and time is measured from the instant the gate opens.

Figure 8. Comparison of measurements and model predic-
tions of flow depths at three cross sections in a water-saturated
debris flow at the USGS flume, July 24, 1995. Downslope
distance is measured from the base of the gate at the flume
head, and time is measured from the instant the gate opens.
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overall pattern of flow acceleration, elongation, and attenua-
tion, although differences in some details are apparent.

Figures 7 and 8 reveal that short-period (;1 s) depth oscil-
lations superposed on the primary waveforms are an obvious
feature of both experimental data and model predictions.
These oscillations reflect the presence of secondary surges that
appear to develop spontaneously as roll wave instabilities
[Schonfeld, 1996]. The secondary surges grow and sometimes
coalesce, and they develop coarse-grained margins similar to
but less conspicuous than that of the flow front. Model simu-
lations of these secondary surges are rather simplistic. The
simulated surges result from growth of infinitesimal depth per-
turbations that allow one or more of the kinematic criteria (24)
to be satisfied locally. Where such a criterion is satisfied, the
hydraulic diffusivity increases and pore pressures decay rap-
idly. Accompanying increases in Coulomb friction produce
feedback that causes the perturbation to grow into a finite
waveform. Such perturbations do not grow indefinitely, how-
ever, because they are stabilized by lateral stress transfer.

Model predictions of pore pressure distributions in the mov-
ing debris flows agree qualitatively with measurements re-
ported by Iverson [1997a, 1997b] and Major and Iverson [1999].
The model correctly predicts pore pressure patterns character-
ized by low pressure (low l) at the flow front and high pressure
(high l) in the liquefied debris that follows. This overall pore
pressure pattern persists throughout the duration of debris
flows, although it is affected by diffusion and advection and
complicated by the secondary waves noted above.

Figure 9 compares model predictions and measurements of
deposits formed by the two experimental debris flows charac-
terized in Figures 7 and 8. In one experiment (April 21, 1994)
the flow was allowed to spread laterally once it reached the
runout surface 82.5 m downslope from the gate. In the other

experiment (July 24, 1995) the flow was confined laterally by
concrete panels that extended the flume side walls 7.4 m across
the runout surface. Both deposits developed relatively planar
upper surfaces and steep lateral and distal margins in the
regions downstream from confined reaches. Lateral confine-
ment caused the distal limit of the debris flow deposit to extend
slightly further than in the unconfined case (Figure 9) and
produced a somewhat larger maximum deposit thickness (;40
cm versus ;25 cm) and considerably more deposition within
the channelized reach. Examination and excavation of each
deposit revealed that deposit interiors remained nearly lique-
fied immediately following deposition, while deposit perime-
ters were well-drained and had considerable frictional
strength. This pattern matches that of many experimental data
and field observations, which indicate that liquefied interiors
and strong perimeters typify fresh debris flow deposits [Major
and Iverson, 1999].

Figure 9 indicates that the computational results predict the
mean runout, lateral spreading, thickness distributions, and
pore pressure distributions of the experimental deposits quite
well. Good predictions of lateral spreading and deposit thick-
nesses provide evidence that the DFE adequately represent
multidimensional momentum transport. Good predictions of
deposit centroids indicate that the DFE adequately represent
overall energy dissipation in variably liquefied flows.

The most obvious misfit between the predictions and data
shown in Figure 9 involves the distal limit of runout. Predic-
tions produce deposits that extend too far and taper too grad-
ually in the downstream direction. These tapering distal de-
posits result mostly from downstream numerical creep of the
nearly static flow front, which occurs while trailing debris ac-
cumulates and comes to rest upstream. Numerical creep arises
from imperfect balancing of source terms and flux terms, a

Figure 9. Isopach maps comparing measurements and model predictions of deposit locations and geome-
tries produced by debris flows in the USGS flume. In one experiment the flume was in its regular configu-
ration. In the other experiment the flume length was extended with concrete panels. Contours depict 4-cm
isopachs of sediment thickness measured normal to the bed. Model results include predicted pore pressure
distributions (indicated by values of l) at the time of deposition. In each experiment, deposition concluded
17–18 s after flow release.
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difficulty inherent in all Riemann methods. This difficulty is
most apparent when flux terms diminish (as in formation of
static deposits), but it might be overcome by static source term
balancing schemes similar to that devised recently by LeVeque
[1998]. We have not yet devised such a scheme for the DFE.

Predicted pore pressure distributions (depicted in Figure 9
by shading that represent l) in general match those inferred
from data and observations [Major and Iverson, 1999]. Zones of
low pore pressure interspersed in high-pressure regions denote
the static remains of secondary wave fronts that advected low
pore pressures into the deposit. As a result, the thickest parts
of deposits coincide with the static remains of secondary waves.

Predicted deposits shown in Figure 9 have lateral margins
that are more tapered and less abrupt than those of deposits
measured in experiments. This discrepancy results in part from
the same numerical creep that affects our predictions of distal
deposit limits and affects our predictions of static regions in
dry granular flows. Numerical creep of deposits is most severe
in partially liquefied flows, however. Such flows decelerate and
form deposits gradually (in contrast to abruptly decelerating
dry granular flows), and numerical creep is exacerbated where
deposits remain nearly static for the longest time.

5. Discussion
The overall success of our predictive model leads us to draw

upon Coulomb mixture theory to interpret phenomena ob-
served in our experiments and in the field. The theory explains
several key aspects of debris flow and granular avalanche be-
havior that have not been explained previously.

Flow front propagation is a crucial aspect of any rapid,
gravity-driven mass movement. Comparison of our experimen-
tal and computational results for dry grain flow through a wide
gate (Figure 5) provides the clearest test of flow front speed
predictions because the flow is nearly one-dimensional and has
few complications due to multidimensional momentum trans-
port and no complications due to pore fluid pressure. In a fully
one-dimensional flow the theoretical speed of a flow front
moving to the right, for example, is given by the Riemann
invariant of the left-going wave emanating from the front, IL 5
v# xuL 1 2cL (equation (21)). This theoretical result predicts the
flow front motion observed in the center of our miniature
flume almost exactly. Good correspondence between theoret-
ical predictions and experimental data provide evidence that
the expression for c derived from Coulomb mixture theory
(equation (12)) is correct. The correspondence implies that c
does, indeed, govern information propagation in granular av-
alanches with lengths much greater than their depths.

The expression for c contains the lateral stress coefficient
ka/p, which is itself derived from the assumption that Coulomb
masses simultaneously deform internally and slide along a
rough bed [Iverson, 1997a]. Existence of distinct ka/p values for
diverging and converging flows causes Coulomb masses to be-
have quite differently from liquids. For example, large values
of ka/p apply in regions of flow convergence and produce large
lateral stresses that can support steep surface gradients. On the
other hand, ka/p values are low in areas of flow divergence,
which occur where flows accelerate down steep slopes. Where
flows are liquefied by high pore pressure, lateral stresses have
hydrostatic values sustainable by liquids. Thus, if the perimeter
of a flow or deposit acts as a Coulomb mass that encloses a
liquefied flow interior, it forms a steep, resistive margin pushed
from behind by liquefied debris that can support little or no

shear stress (Figures 7–9). The interaction of resistive, high-
friction margins and weak, more-fluid interiors typifies a num-
ber of geophysical flows, including debris flows, pyroclastic
flows, and aa lava flows.

Multidimensional momentum transport is another key facet
of most gravity-driven mass movements. Multidimensional mo-
mentum transport has the clearest effects in our experimental
and computational results for dry grain flow through a narrow
gate (Figure 6). Divergence and convergence that occur as
grains pass through the gate greatly reduce average flow speed
(relative to the wide-gate case without divergence and conver-
gence) and produce strong Coulomb shear stresses on planes
normal to the basal boundary. These transverse shear stresses
(denoted in the governing equations by terms that include sin
wint) generate much of the resistance that impedes flow
through the gate and causes some sediment to be stranded
behind the gate. We infer that flow models without transverse
shear stresses will not accurately simulate flow interactions
with complex topography.

The same transverse shear stresses cause increased energy
dissipation where deposits spread laterally. Consequently, the
dry grain flow through the narrow gate dissipated energy more
quickly and deposited more sediment above the break in slope
(at 100 cm in Figures 5 and 6) than did the flow through the
wide gate. Nonetheless, the differences in deposit geometries
in these two cases are rather subtle. The deposits preserved
little information about the rather different flows that formed
them.

Deceleration and deposition of both dry grain flows and wet
debris flows respond strongly to changes in bed slope. The
response includes two components. One component reflects a
simple trade-off between reduced driving stress and increased
resisting stress that occurs as bed slopes decline. The other
component depends on the magnitude of the centripetal ac-
celeration term involving the local radius of bed curvature. In
the x momentum equation, for example, the effect of bed
curvature on the basal friction force is proportional to v# x

2/rx,
whereas the effect of bed slope on the basal friction force is
proportional to gz [Iverson and Denlinger, this issue]. In gently
sloping regions where flows decelerate and stop, gz ; 10 m/s2

is typical, but v# x
2/rx varies depending on flow speed and bed

curvature. In our small-scale experiments, v# x
2/rxgz ; 0.4 was

typical of flow deceleration, indicating that frictional braking in
response to bed curvature was less important than braking due
to the change in bed slope. In contrast, values v# x

2/rxgz ; 2
typified deceleration in our large-scale debris flow experi-
ments, indicating that bed curvature locally dominated fric-
tional braking. Clearly, effects of bed curvature must be incor-
porated in efforts to model geophysical flows, which may be
very rapid and may encounter terrain with significant local
curvature (small rx).

Although the DFE simulate the effects of three-dimensional
flow boundaries quite well, we have not yet applied our model
to irregular terrain typical of natural landscapes. Testing of
model predictions against data from natural flows is difficult
because for uncontrolled natural flows it is difficult to separate
the influences of the governing equations, parameter values,
and initial and boundary conditions. Indeed, we believe that no
satisfactory field tests of models of geophysical grain flows have
ever been conducted. On the other hand, our model can be
tested with additional controlled experiments and used to rep-
licate field data. In this paper we emphasize the initial phase of
testing, and field applications remain as a future endeavor.
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Computation of pore pressure distributions in geophysical
grain flows poses another future challenge. Because high pore
pressures can reduce Coulomb friction very substantially, and
because Coulomb friction causes most energy dissipation, er-
roneous pore-pressure distributions might cause large predic-
tive errors. Errors are likely to be most significant where the
balance of forces is most delicate, where flows commence and
where they decelerate and form deposits. Our predictions of
deposit locations and geometries for flume experiments with
water-saturated sand and gravel benefitted from relatively tight
constraints on initial conditions and key material properties
such as the pore pressure diffusivity. Where constraints are
weaker, accurate prediction will be more difficult. In our opin-
ion, improved means of estimating pore pressure distributions
hold the key to improved predictive modeling of geophysical
flows.

6. Conclusions
Correspondence between model predictions and experimen-

tal data for diverse, variably fluidized grain flows provides
evidence that the debris flow equations (DFE) adequately de-
scribe the flow physics and that the Riemann method ade-
quately solves the DFE. Our tests of the DFE and Riemann
solver involved no calibration of parameter values or tailoring
of initial and boundary conditions. Similarly stringent tests are
difficult if not impossible to achieve when model results are
fitted to field data.

Analysis of the DFE leads to identification of a gravity wave
speed c that differs from the speed of conventional shallow-
water gravity waves. The new expression for c reveals a key
distinction between models that assume grain-fluid flows act as
liquids with modified viscosities [e.g., Sousa and Voight, 1991]
and models such as the DFE that account for frictional grain
interactions: intergranular Coulomb friction causes flow diver-
gence or convergence and variable fluidization (liquefaction)
to affect information propagation markedly. This information
propagation governs important phenomena such as the speed
of advancing flow fronts.

Numerical and experimental results indicate that three-
dimensional flow paths can cause strong Coulomb shear
stresses to develop on planes normal to the basal flow bound-
ary. These stresses dissipate energy as flow encounters obstruc-
tions, and they may cause debris to lodge upslope of obstacles
or in tight constrictions. Models that lack multidimensional
momentum transport or Coulomb friction cannot represent
this energy dissipation and lodging.

Effects of three-dimensional flow paths on patterns of dep-
osition might be used to constrain interpretations of geophysi-
cal events for which no real-time data are available. However,
our initial investigations of dry grain flows indicate that rather
similar depositional patterns can result from differing initial
conditions, flow durations, and flow geometries (Figures 5 and
6). We infer that depositional patterns might provide only
weak constraints on flow behavior in some circumstances.

Flows that are partly fluidized or liquefied by intergranular
fluid pressure move more efficiently than flows without fluid
pressure. This increased efficiency cannot be interpreted as the
result of a distinct, steady state rheology that governs momen-
tum transport and energy dissipation. Instead, the apparent
rheology evolves as pore fluid pressures evolve from a uniform
state to a state typified by a pressurized flow interior and
depressurized flow perimeter. This evolution is an intrinsic

aspect of many geophysical flows, which are invariably un-
steady and nonuniform. For water-saturated debris flows we
simulate this evolution by assuming that pore fluid pressures
initially rise to high levels and then simultaneously advect with
the flow and diffuse normal to the flow boundary. Pore pres-
sure advection and diffusion are influenced by development of
coarse-grained flow fronts with increased diffusivities and con-
sequent increased friction. Enhanced marginal friction pro-
duces flows with steep surge fronts that are absent in granular
flows with homogeneous frictional resistance [e.g., Savage and
Hutter, 1989, 1991]. Inhomogeneous friction also produces de-
posits with steep margins and relatively flat, fluid interiors that
develop significant strength only during post-depositional sed-
iment consolidation [cf. Major and Iverson, 1999].

Despite significant differences in material properties, similar
geometries develop in diverse geophysical flows (debris ava-
lanches, pyroclastic flows, aa lava flows, wet snow avalanches)
in which a high-friction outer rind appears to impede the
motion of a more-fluid, low-friction interior. Our model pro-
vides a mathematical and computational structure that can be
applied with only minor modifications to these diverse flows.
Consequently, we believe it is possible to simulate the behavior
of a variety of geophysical flows without invoking rheological
parameters or fitting coefficients that have questionable phys-
ical significance.
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