Contrib Mineral Petrol (2001) 141: 307-321
DOI 10.1007/s004100000210

Larry G. Mastin - Mark S. Ghiorso

Adiabatic temperature changes of magma-gas mixtures during ascent

and eruption

Received: 20 October 1999 / Accepted: 15 September 2000 / Published online: 28 February 2001

© Springer-Verlag 2001

Abstract Most quantitative studies of flow dynamics in
eruptive conduits during volcanic eruptions use a sim-
plified energy equation that ignores cither temperature
changes, or the thermal effects of gas exsolution. In this
paper we assess the effects of those simplifications by
analyzing the influence of equilibrium gas exsolution
and expansion on final temperatures, velocities, and
liquid viscosities of magma—gas mixtures during adia-
batic decompression. For a given initial pressure (p;),
temperature (7;) and melt composition, the final tem-
perature (7y) and velocity (u,,4) Will vary depending on
the degree to which friction and other irreversible pro-
cesses reduce mechanical energy within the conduit. The
final conditions range between two thermodynamic end
members: (1) constant enthalpy (dh=0), in which T} is
maximal and no energy goes into lifting or acceleration;
and (2) constant entropy (ds=0), in which T is minimal
and maximum energy goes into lifting and acceleration.
For ds=0, T;=900 °C and p; =200 MPa, a water-sat-
urated albitic melt cools by ~200 °C during decom-
pression, but only about 250/ °C of this temperature
decrease can be attributed to the energy of gas exsolu-
tion per se: the remainder results from expansion of gas
that has already exsolved. For the same 7; and p;, and
dh=0, Tis 10-15 °C hotter than T, but is about 10—
25 °C cooler than T, in similar calculations that ignore
the energy of gas exsolution. For ds=0, p; =200 MPa
and T,= 9,000 °C, assuming that all the enthalpy
change of decompression goes into kinetic energy, a
water-saturated albitic mixture can theoretically accel-
erate to ~800 m/s. Similar calculations that ignore gas
exsolution (but take into account gas expansion) give
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velocities about 10-15% higher. For the same T,
pr=200 MPa, and ds=0, the cooling associated with gas
expansion and exsolution increases final melt viscosity
more than 2.5 orders of magnitude. For dh=0, isen-
thalpic heating decreases final melt viscosity by about
0.7 orders of magnitude. Thermal effects of gas exsolu-
tion are responsible for less than 10% of these viscosity
changes. Isenthalpic heating could significantly reduce
flow resistance in eruptive conduits if heat generation
were concentrated along conduit walls, where shearing is
greatest. Isentropic cooling could enhance clast frag-
mentation in near-surface vents in cases where extremely
rapid pressure drops reduce gas temperatures and chill
the margins of expanding pyroclasts.

Introduction

The violent processes that accompany volcanic erup-
tions — high ejection velocities, convective uplift, pro-
duction of shock waves, etc. — result largely from the
conversion of thermal energy stored in magmas to me-
chanical energy. Yet numerical programs designed to
calculate flow properties in eruptive conduits, with only
a few exceptions (Buresti and Casarosa 1989; Wohletz
and Valentine 1990; Mastin 1995a, 1997), assume that
temperatures within the conduit remain constant. Those
that do calculate temperature changes assume that the
mass fraction of gas in the erupting mixture does not
change with pressure (Buresti and Casarosa 1989) or do
not take the energy of gas exsolution into account in the
energy budget (Wohletz and Valentine 1990; Mastin
1995a, 1997). Only two models (Proussevitch and
Sahagian 1998; Mastin 2000) consider the non-isother-
mal flow in eruptive conduits and incorporate thermal
effects of gas exsolution.

To date, the question of how the energy of gas ex-
solution affects eruptive processes has not been directly
addressed. Several studies have estimated thermody-
namic parameters that control gas exsolution (e.g.,
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Burnham and Davis 1971, 1974; Nicholls 1980; Nicholls
and Stout 1982; Ghiorso et al. 1983; Silver and Stolper
1985; Ghiorso and Sack 1995; Papale 1997). One study
(Sahagian and Proussevitch 1996) estimates the effect of
gas exsolution on the final temperatures of decom-
pressed albite-water mixtures. None of these studies,
however, considers the effect of gas exsolution on the
energetics of conduit flow.

Theory

We limit our analysis to conditions under which mag-
ma—gas mixtures do not lose significant heat or gas to
the surrounding wall rock during transport. These con-
ditions are most closely met when mass-flux rates are
high; specifically in Plinian, sub-Plinian, and basaltic
lava-fountain eruptions. Conductive heat loss into the
host rock during such eruptions is at least a few orders
of magnitude less than heat flux through the conduit by
mass flow (Woods 1995). Similarly, gas loss through
conduit walls can be low for high flux rate eruptions
(Jaupart and Allégre 1991), though in low flux rate
eruptions it can dominate flow processes (Eichelberger
et al. 1986).

We calculate temperature change using the following
energy equation (Moran and Shapiro 1992, p. 123; see
Table 1 for a list of variables):

2
h+ % + gz = constant (1)

The equation states simply that the sum of enthalpy
plus kinetic energy plus elevation potential energy per
unit mass (the first three terms on the left, respectively) is
constant. Equation (1) assumes that no heat, work, or
mass is transferred into or out of the mixture. It makes
no assumptions regarding the reversibility of the pro-
cess, or the presence or absence of phase changes or
chemical reactions within the system.

If one considers that temperature is related to enth-
alpy, it is apparent from Eq. (1) that the final tempera-
ture of the mixture is not unique. Mixtures that
accelerate and rise to great heights will have more kinetic
and potential energy, and less enthalpy (be cooler) in
their final state than those that do not rise or accelerate.
Lifting 1 kg of magma 4 km would cool it by about 40 °C
[assuming that gAz=c,, AT, and c,,, the specific heat,
=n~1 kJ/(kg K)]. Accelerating it to 200 m/s would cool it
about 20 °C.

Without a model that explicitly calculates accelera-
tion and lifting in an eruptive conduit, one cannot de-
termine the values of the terms in Eq. (1). One can,
however, establish minima and maxima for them:

1. If no energy goes into acceleration or lifting, then
h=constant and cooling is minimal. Fluids decom-
press under constant-enthalpy (isenthalpic) condi-
tions if friction (primarily viscous shearing) is so great
as to recycle all kinetic energy back into heat.

Hydrothermal fluids flowing through porous media
are assumed to decompress isenthalpically (e.g.,
Hayba and Ingebritsen 1997), as are industrial fluids
driven through porous filters under high pressure
gradients (Moran and Shapiro 1992, p. 498). Phreatic
eruptions have been studied as isenthalpic processes
(White 1955; Muffler et al. 1971), although kinetic
and lifting energies may be significant in some of
them. For magma—gas mixtures, decompression most
closely approaches isenthalpic when ascent velocities
are low and expansion is minimal — usually at great
depth in an eruptive conduit.

2. If no friction or other irreversible process impedes
lifting or acceleration, then cooling is maximal and
the entropy of the erupting mixture is constant. The
constancy of entropy under these conditions can be
demonstrated by differentiating Eq. (1) and substi-

tuting dh with its thermodynamic equivalent
(dq + vdp):
dq + vdp + udu + gdz = 0 (2)

Under adiabatic conditions [assumed for Eq. (1)],
changes in heat (dg) occur only as a result of irreversible
processes. Primary among these is friction, which dissi-
pates kinetic energy and recycles it into heat. Resistance
to bubble expansion by a viscous melt will also convert
kinetic energy into heat, as will irreversible gas exsolu-
tion (Sahagian and Proussevitch 1996).

The change in specific entropy (s) of a system is de-
fined as ds = dg/T. If no heat is generated, the entropy
does not change and the process is reversible. Gas flow
through engineered, frictionless nozzles (Moran and
Shapiro 1992, p. 234) is nearly isentropic and much of
gas dynamics theory is predicated on the assumption of
constant entropy (e.g., Liepmann and Roshko 1957;
Saad 1985). Several studies of erupting magma-gas
mixtures have also assumed constant-entropy decom-
pression (Kieffer and Delany 1979; Kieffer 1981, 1984;
Wohletz 1986; Mastin 1995b). Decompression of mag-
ma—gas mixtures most closely approaches isentropic in
cases where gas expansion is maximal and velocities are
high, such as in a flaring eruptive vent at the Earth’s
surface.

Assumptions and simplifications

The objective of this study is to calculate the change
in temperature of decompressing melt—gas mixtures
under isentropic and isenthalpic conditions, with and
without gas exsolution. To simplify our calculations,
we assume that: (1) chemical changes in the erupting
mixture involve only gas exsolution (i.e., crystal
growth is ignored); (2) the gas phase is purely H,O;
and (3) gas and melt remain in thermal equilibrium.
Violation of condition (1) will likely slightly increase
final temperatures. Violation of condition (3) may
produce heterogeneous temperatures but will not sig-
nificantly affect the average bulk temperature. Intro-
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Description Units

Variable

C Sound speed m/s

cp Specific heat at constant pressure J/(kg K)

¢, Specific heat at constant volume J/(kg K)

f Fugacity Pa

G, Elastic shear modulus Pa

g Gravitational constant m/s?

h Specific enthalpy J/kg

h Molar enthalpy J/mol

K Empirical constant used to calculate brittle failure dimensionless

k Bulk modulus Pa

m; Mass fraction of component i in system (melt + gas) Dimensionless

m; Mass fraction of component 7 in melt Dimensionless

M; Mass of component i in melt kg

M,y Total mass of melt kg

M, Total mass of system (melt+ gas) kg

p Pressure Pa or MPa

q Heat J/kg

R Universal gas constant (8.314 J/mol K) J/(mol K)

s Specific entropy J/(kg K)

s Molar entropy J/(mol K)

T Temperature CorK

u Velocity m/s

v Specific volume m’/kg

[ Molar volume m?/mol

w; Molecular weight of component i kg/mol

Wy Interaction coefficient between components i and j J/mol

X; Mole fraction of component i Dimensionless

X Total number of moles moles

z Vertical position (positive upwards) m

B Empirical gas solubility constant Dimensionless

P, Integral of vdp, where v is the partial molar volume of J/mol

dissolved water in a melt

¢ Volume fraction gas Dimensionless

€ Strain rate s

n Viscosity Pas

Vo Activity coefficient of water in melt Dimensionless

i Chemical potential J/kg

I Molar chemical potential J/mol

p Density kg/m?

o Empirical gas solubility constant Pa’
Subscripts

Final state (after decompression)

g Gas phase

ij Component 7 or j in melt

m Liquid (melt) phase

max Maximum (e.g., u,,,, =maximum theoretical velocity)

Y4 Constant pressure

T Constant temperature

tot Total

v Constant volume

w H,O (water) component

1 Initial state (prior to decompression)
Superscripts

o Standard state

duction of a non-aqueous gas component (such as
CO,) will affect the solubility of the gas phases, the
entropy and enthalpy of exsolution, and the thermal
effect of gas expansion. For reasons outlined in Ap-
pendix A, we expect the enthalpy and entropy of ex-
solution of CO, to be of the same order of magnitude
as for H,O.

In order to derive equations for the change in
temperature with pressure (d7/dp), we require a simple

relation between the mass fraction of dissolved water in
the melt (m,,) and pressure (p) that can be easily differ-
entiated. We use the following:

i, = Upﬁ (3)

where ¢ and f§ are empirically determined constants. At
pressures below a few hundred megapascals this equa-
tion reproduces experimental data to a reasonable level
of accuracy and has been used in most conduit models
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(e.g., Wilson et al. 1980; Giberti and Wilson 1990;
Dobran 1992).

The mass fractions of melt (m,,) and gas (m,) in the
total system can be calculated from Eq. (3) as:

Mg = My, — My, If My, > myop® (4a)
mg =0, if m, < myop” (4b)
my =1—my (4c)

where m,, is the total mass fraction of water (exsolved
plus dissolved) in the system.

Methods of solution

We assume a thermodynamic system consisting of a
silicate melt and water. The system may initially contain
a single phase (melt), or two phases (melt plus gas) de-
pending on whether the amount of water present exceeds
that which can dissolve in the melt. The specific enth-
alpy, h, and entropy, s, of the mixture are sums of s and
h of the two phases multiplied by their respective mass
fractions:

h = mghy + myh,, (5)
S = MySy + MySpy (6)

For a given p and T, h, and s, can be calculated (Haar
et al. 1984), as can £, and s,, if the composition of the
melt is known (Ghiorso and Sack 1995). Similarly, m,
and m,,, can be determined if the total water content and
its solubility in the melt are known.

Thus for a given initial pressure, temperature, and
chemical composition, the value of / or s can be calcu-
lated. After decompression, the final pressure of the
system is known, as well as m,, m,, [from Eq. (4a—c)],
and the composition of the melt. Thus one can simply
adjust the final temperature until the final entropy or
enthalpy equals the initial value. Because /& and s are
state functions, the thermodynamic path does not have
to be known to calculate final temperature.

This method is simple and it can be performed
without formulating and integrating differential equa-
tions for dT/dp. However, it has the disadvantage that
one cannot see the mathematical terms that govern
cooling due to expansion, decompression, and gas
exsolution. Without being able to identify those terms,
one cannot evaluate their importance or judge the effect
of uncertainties in their numerical values. Therefore we
derive the differential equations below. We check their
correctness by integrating them and comparing their
results with those obtained from the method above.

dT/dp for isenthalpic decompression

We derive dT/dp for isenthalpic decompression by dif-
ferentiating Eq. (5):

dh = d(mghy + myhy,) = mgdhy + mydhy, + hydmg + hy,dm,, =0
(7
We evaluate m,,, and m, as described above, and

obtain dm, and dm,, by differentiating Eq. (4a—c) (see
Appendix B) to give:

Myhit,

dmg = — (- rhw)I_JdP my, > mmap/} (8a)

=0m, < myop’ (8b)

dm, = — mmﬁfw Edp my > myop” (9a)
(1 =) p

m, < mmapﬁ (9b)

We derive dhg, as follows:

dhy = (%)pdT + (%") v CpydT + [vg ET(%)]QIP

‘ . (10)
g

The change in enthalpy of the melt (dh,,,) is the sum of
the partial differentials with respect to p, T, and the mass
(M,,) of dissolved water, holding the masses of all other
components, M; (SiO,, TiO,, etc.) constant:

dh,, = <%> dr + (%> dp + (%’) M,
or pM; ap T,M; oM,, T.p,M;#M,

It is shown in Appendix C that:

8hm Y ”hw ﬁ
— dMM = " hw -
(aM) =

(11)

hu)dp (12)
where /,, is the partial enthalpy of dissolved water in the
melt per unit mass water. Substituting Eq. (12) into Eq.
(11) and making the same substitutions for the partials
with respect to p and T as were used in Eq. (10), we
obtain:

dhyy = CpmdT + {

) avm 1y ﬂ
on = T(@T)J T p ™ _hM)}dp "

Substituting the above expressions for dhg, dh,,, dm,
and dm,, into Eq. (7) and rearranging, we obtain the
following expression for the isenthalpic change in tem-
perature with pressure for water-saturated melts:

ar —mnlon =T —my[v, = T(52)| + st (1, — o)
dp N MyCpg + My Cpm

(14)

The first two terms in the numerator,
My [ — T (00, /OT)] and mgy[vy, — T(0v,/0T)], give the
effect of expansion and decompression of the liquid and
gas phases, respectively, on cooling. The third term gives
the cooling effect of gas exsolution. Equation (14) has
the following implications:

1. For a single-phase liquid with no exsolving gas and
(0v,u/0T) =0, dT/dp =—v,,/cpm. The minus sign on the
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right-hand side indicates that a drop in pressure
produces an increase in temperature. For realistic
values of ¢, v, and T(dv,,/dT), a pressure drop of
200 MPa would heat the magma by about 50 °C
(Fig. 1).

2. For a perfect gas, all three terms in the numerator
are zero, hence dT/dp=0 (Fig. 1). Adiabatic, isen-
thalpic decompression of an ideal gas thus implies
no temperature change. In fact, real H,O gas at
magmatic temperature cools by more than 120 °C
over 50 MPa (Fig. 1), suggesting that a perfect gas
approximation may not be appropriate for these
calculations.

dT/dp for isentropic decompression

Differentiating Eq. (6), we obtain the following expres-
sion for the change in entropy:

ds = mydsy + Muydsy + Smdmy, + sgdmy = 0

(15)

Assuming the gas to be a simple compressible sub-
stance (but not necessarily a perfect gas), ds, reduces to:

dr v,
dsg = Cpg— T (8%) dp
»

where c¢,; and (dvy/ 0T) are known from relations for
water and steam (Haar et al. 1984). The differential ds,,, is:

(16)

ah=0, perfect gas, and

ah=0, liqud i i
i q as=0, liquid ~
2 R e .
600 [ e dh=0,HO gas "™~
(] Ty
- 500 as=0, perfect gas Be:
3 ds=0HOgas -,
£ 4001 P
a ~
E v
o aool .
200 \
2-phase :
region
100
0 1 1 1 1 L 1 | 1 1

50 45 40 a5 30 25 20 15 10 5 C
pressure, MPa

Fig. 1 Temperature versus pressure for ideal gases, real H,O gas,
and liquids decompressing from p=50 MPa, T=750 C, under
constant-entropy (ds=0) and constant-enthalpy (dh=0) condi-
tions. Lightly shaded region represents the range of possible cooling
for perfect gases (c,e =2,700 J/(kg K), molecular weight=0.018 kg/
mol), bounded below by ds=0 and above by dh=0 (dT=0). The
darkly shaded area represents the analogous region for liquids
(v, =0.0004 m*/kg, ¢pm=1000 J/(kg K), (0v,,/0T),=5 X 108 m¥
kg K). The upper and lower dashed lines represent the dh=0 and
ds=0 cooling paths, respectively, of real H,O gas, obtained using
equations of Haar et al. (1984) for &, and s,. Under isentropic
decompression, real H,O gas begins to condense before reaching
0.1 MPa (dotted segment)
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dsm:(%) dT+(6Sm) dp+(‘9i"’) dit,  (17)
or M 8]7 T,M, 8A}\lw p.T.M,#Mw

As shown in Appendix C, the following expression
can be derived for the third term on the right:

<8im ) dMW = mwA é (Sw -
OMy) b1 41,241, (1 —rn)p

This yields the following for ds,,;:

_Comgp _ |(O0m) e B
dsy, = TdT |:<8T)p (l—i’;’lw)p(sw Sm):|dp

The values of ¢, and (dv,,/ 9T) can be calculated if
the pressure, temperature, and composition of the melt
are known (Ghiorso and Sack 1995). Equations (16) and
(19) can be substituted into Eq. (15) to give the following
for water-saturated melts:

T vy i
dT T{mm([)T) +m‘7(017~/) +m£(sq —sw)}

dp My Cpm + MyCpy

Sm)dp (18)

(19)

(20)

The terms m,,(0vy/OT), and my(9v,/0T), on the
right side give the cooling e#ect of expansion ofpmelt and
gas, respectively. The third term in the numerator on the
right gives the cooling effect of gas exsolution. Equation
(20) has the following implications for simple systems:

1. For a single-phase liquid with (dv,,/0T)=0, all terms
in the denominator are zero, implying no change in
temperature with pressure (Fig. 1). For real silicate
liquids, (dv,,/07),=~5-8 x 10°® m’/(kg K), giving
temperature decreases of ~2—4 °C for 100 MPa of
decompression. This amount of cooling is impercep-
tible in Fig. 1.

2. For a single-phase system of perfect gas, the first and
third terms in the numerator are zero, and the term,
(9vg/dT), can be replaced with R/(W,p), where W, is
the molecular weight of water. Thus Eq. (20) reduces
to:

dl _ RT
dp  cpWup

(21

Assuming a constant c,, of 2,700 J/(kg K) and a
starting temperature of 750 °C, the equation above
yields a temperature drop of more than 660 °C over
50 MPa (Fig. 1). For real H,O gas, c,, varies by more
than 30% over this pressure range (from ~2,000 to
3,100 J/kg K). This fact, combined with the non-ideal
behavior of H,O, produces greater cooling than pre-
dicted by Eq. (21), causing the gas to condense into a
two-phase mixture at low pressure.

Evaluating s,, and 4,

The most difficult terms to evaluate in Egs. (14) and (20)
are h,, and s,. They can be derived from the chemical
potential of dissolved water, ,, using the relations
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sy =—-(w,/0T) and h, = u, + T5,. In turn, p, can be
constrained from experimental data based on the fact
that, at saturation, p, equals the chemical potential of
water in the gas phase (l,). In their program MELTS,
Ghiorso and Sack (1995) use a method for calculating p,,
modified from Nicholls (1980). The method of Ghiorso
and Sack (1995) predicts H,O solubility reasonably well
at pressures below a few hundred megapascals (Fig. 2a).
Ghiorso and Sack calculate the chemical potential of
water as follows:

A
.aw = RT(? +B> + (Dp + .ag‘Haar(Tv latm) - .ag‘Rob[e(Ts 1atm)

n n

PRI+ Y s =33 (2)

WijXiXj
i=1 j=1

Fig. 2 a Dissolved water versus

where 4 and B are empirically derived constants; w; are
empirically derived interaction terms between compo-
nents / and j [e.g., between SiO, and TiO,, using the
complex oxides defined in Ghiorso and Sack (1995) as
the individual components]; fi, g4 and i, gope are the
molar chemical potentials of gaseous H,O at 0.1 MPa
pressure, calculated using methods of Haar et al. (1984)
and Robie et al. (1978), respectively; w,,; (a subset of w;)
are interaction coefficients between dissolved water and
some component i; x; is the mole fraction of component
i; x; is the mole fraction of component j; and @, is the
integral of the partial molar volume of dissolved water
() with pressure, evaluated at the temperature of in-
terest, and integrated from p=0 Pa to the pressure of
interest:

pressure for water-saturated
albite, rhyolite, and MORB
basalt. Symbols represent ex-
perimental data from Hamilton
and Oxtoby (1986) for albite,
Dixon et al. (1995) for MORB
basalt, and Holtz et al. (1995)
for rhyolite. Lines give satura-
tion values for these magma
types predicted by Eq. (22).

b Enthalpy difference (i,-h,,)
versus pressure for the three
magma types given in a, using
methods of solution from
MELTS [Eq. (25)], Papale
(Appendix A), and Sahagian
and Proussevitch (1996)
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P
@, = / Tudp (23)
0

The MELTS program of Ghiorso and Sack (1995)
uses values of 4 (-33,676.0 J/mol K) and B (18.3527 J/
mol) that are optimized for data on water solubility. The
values of the interaction coefficients w were determined
by Ghiorso and Sack (1995) through multivariate re-
gression of more than 15,000 experimental data on sili-
cate melts. The overlines above each term (g, for
example) indicate that they are given per mole H,O,
rather than per kilogram, in contrast to s and / in earlier
equations.

We calculate v,,using a 3-D polynomial function of
p and T derived by Burnham and Davis (1974) for
albite-water melts, which gives 7,, ~18-34 cm?/mol for
pressures of 0.1-200 MPa and temperatures of 700—
11;008 °C. More recent studies (Ochs and Lange 1997,
1999) give values that differ somewhat from those of
Burnham and Davis (1974), but those differences do not
significantly affect the results of this study.

From the relation s,,=—(du,/dT), the difference
54 — 5y can be derived from Eq. (22):
oo,
Sy — 5w =54+ RB+ (8T> +5g Rovie (T, Latm)
— 34 Haar (T, latm) + 2R 1n x,, (24)

The value h, — h,, is obtained from Egs. (22) and (24)
by the thermodynamic identity &, = fi,, + 75,,:

oo,
oT

+ hq Rrovie(T, Latm) — Z WiXi + 3 Z Zwl]x,xj

i=1 j=1

hy —hy=hy —RA — @, + T( ) —hg taar(T, 1atm)

(25)

For phase transitions in pure, single-component sys-
tems, hy — h,, = T(s, — 5,). Sahagian and Proussevitch
use this relation in deriving h, — h,,. Equations (24) and
(25) cannot be reduced to give this relationship; but the
values we calculate for h, — h,, of saturated albite using
Eq. (25) are within 0.1% ‘of T (5, — 5w), so we consider it
appropriate here. The values of 5, —5,, and A, — h,, are
divided by the molecular weight of water to give s, — s,
and Ay — h,, used in Egs. (14) and (20).

Sahagian and Proussevitch (1996) use a somewhat
different method, derived from Burnham and Davis
(1974), to calculate hy — h,,, for albite. A third method
can be derived from relations given in Papale (1997) (see
Appendix A). Zhang (1999) has also derived an ex-
pression for h, — h,, which takes into account the spe-
ciation of dlssolved water into OH™ and molecular H,O.
We do not include Zhang’s derivation because it de-
pends on the value of an unknown constant.

The methods of Ghiorso and Sack (1995), Sahagian
and Proussevitch (1996), and Papale (1997) all give
values of iy — h,, on the order of hundreds of kilojoules
per kilogram over pressures of tens to hundreds of
megapascals (Fig. 2b). But the specific values of &, — A,
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obtained by each method differ substantially at a given
pressure, temperature, and composition. For example,
albite values of h, — h,, from Sahagian and Proussevitch
(1996) and Papale (1997) are higher than those from
MELTS at p<~40 MPa, and lower at p>~40 MPa.
MELTS values for rhyolite are lower at all pressures
than those derived from Papale (1997). Above
p=~130 MPa, rhyolite values are negative using the
values of MELTS, but not using values derived from
Papale (1997). For albite, negative values are implied at
p>~300 MPa using calculations of Sahagian and
Proussevitch, but not using values of MELTS or Papale
(1997). Negative exsolution enthalpies at p > ~400 MPa
are in fact implied by experiments of Holtz et al. (1995)
for Qz—Ab—Or systems, and by experiments of Hamilton
and Oxtoby (1986) for albite. The differences in values of
hg — h,, reflect both the strengths and weaknesses in each
formulation, and limitations of the data sets used to
calibrate them. In the next section, we show that these
differences do not significantly affect the temperature-
change calculations.

Results

We solve equations Eqs. (14) and (20) using a fifth-order
Cash—Karp Runge—Kutta solution (Press et al. 1992,
pp. 713-715). We use the method of Ghiorso and Sack
(1995) for calculating melt-related variables (v,
(Ovw/OT), cpm) and equations from Haar et al. (1984) for
gas properties [vy, (Ov,/0T), Cpgl.

For comparison, we also calculate temperature
changes for two cases that ignore the energetics of gas
exsolution, using simplified equations for d7/dp at con-
stant enthalpy:

— 7)) = mafu — 7 ()]

(dT> ~ 1 [ 26)
dp), MgCpg + M Cpm
and constant entropy:

Ay
o T{mm( ) +mq<dr)p}
el [ 27
(dp>s My Cpm =+ MyCpy @)

In one case (denoted “‘case 17), we let m, and m,,, vary
as gas exsolves. In the second case (“‘case 2”°), we hold m,
and m,, constant at the values they would have at
p=0.1 MPa. We maintain the same total amount of
water (m,,) in each case. The case-2 solution is analogous
to decompression of a fixed-ratio mixture of inert,
compressible melt particles and gas (e.g., the conduit
model of Buresti and Casarosa 1989).

Figure 3b shows the change in temperature of a wa-
ter-saturated albite melt, initially at 900 °C, decom-
pressing from p=200 MPa to 0.1 MPa. This pressure
range corresponds to ascent from about 8 km depth —
comparable to the distance traveled by melt from Mount
St. Helens on 18 May 1980 (e.g., Pallister et al. 1992).
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The total water content of the system is assumed to re-
main constant at 7.75 wt% — equal to the saturation
value of water in albite at 200 MPa.

For isenthalpic cooling, the full solution (upper solid
line in Fig. 3b) gives lower temperatures than either
solution that ignores the energetics of gas exsolution (the
upper dashed and dotted lines). But the differences in
final temperature amount to less than 25 °C. The full
solution shows a slight increase in temperature with
decreasing pressure from about 200-60 MPa, indicating
that the heating effect of the shearing liquid dominates
over the moderate cooling produced by isenthalpic de-
compression of the H,O gas. At lower pressures, gas
expansion and exsolution cause the bulk mixture to cool
with decreasing pressure.

For the isentropic case, adiabatic cooling is substan-
tial — roughly 200425 °C. Temperatures calculated by
the full MELTS solution (lower solid line) lie between
the case-1 and case-2 solutions that ignore the energy of
gas exsolution. The latter two cases give final tempera-
tures that are 31 °C below and 22 °C above the full
MELTS solution, respectively, implying a difference in
cooling of only about 12% from that given by the full
solution. For comparison, Fig. 3b also shows isentropic
decompression curves calculated using values of s, — s,
from Sahagian and Proussevitch (1996), and from rela-
tions derived from Papale (1997). The final temperature
using the MELTS simulation does not differ by more

Fig. 3 a Volume fraction

than a few degrees from that of Papale or Sahagian and
Proussevitch. However, the latter two methods give
lesser amounts of cooling at pressures > ~50 MPa than
the MELTS formulation, as one would expect from the
relative values of %, —h,, (and their implications re-
garding s, — s,,) illustrated in Fig. 2b.

Using the MELTS formulation for exsolution enth-
alpy, we have repeated these calculations for water-sat-
urated albite melts decompressing from p; < 200 MPa,
for T'; ranging from 700 to 1,100 °C. for ds=0, the full
solution gives average cooling rates ranging from
~2.50 °C/MPa at p; <~10 MPa to ~0.75 °C/MPa for
p1=200 MPa. For p;=200 MPa, T for solutions that
ignore the energy of gas exsolution lie about 25 °C above
(case 1) and below (case 2) T, obtained from the full
solution. For dh=0, both solutions that ignore gas ex-
solution tend to give final temperatures higher than the
full solution, though all solutions are within about
150 °C of one another.

Effect on eruption velocities

The effect of gas exsolution on the velocity of erupting
mixtures can be estimated by rearranging Eq. (1). If one
ignores the gravitational term, one can calculate a
maximum theoretical velocity of isentropically decom-
pressing mixtures (u,,,,) by assuming that all the enth-
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alpy change is converted to kinetic energy:

Umax = 2(/’!1 - hf) (28)
This method was used by Mastin (1995b) for non-juve-
nile eruptions, and by Wilson (1980) for Plinian erup-
tions to calculate maximum theoretical velocities as a
function of initial pressure. The two studies ignored the
energy associated with gas exsolution and assumed that
the mass fraction gas did not change with pressure. In
these respects, their analysis was the same as the case-2
approach that ignores gas exsolution. Wilson (1980) (but
not Mastin 1995b) made the additional assumption that
the gas obeyed the ideal gas relation.

As shown in Fig. 4a, the solutions that take gas ex-
solution into account (solid lines) give u,,,. of a few to
several hundred meters per second for initial pressures of
10 MPa or more. Case-2 solutions that ignore gas ex-
solution give u,,,, values that are several percent higher
(amounting to a few to several tens of meters per sec-
ond). The higher u,,,, values of these case-2 solutions
result from the existence of a gas phase throughout de-
compression that can expand, and from the fact that no
energy 1s expended in gas exsolution.

Figure 4b gives the total enthalpy released as these
mixtures decompress isentropically to 1 atm pressure.
The energy released is roughly an order of magnitude
less than that released by explosives (2-2.2 MJ/kg for
gunpowder; ~4.5 MJ/kg for TNT) and somewhat less
than the maximum available from decompressed melt—
water mixtures (~0.4-0.45 MJ/kg; Wohletz 1986; Ma-
stin 1995b). If the assumptions of Eq. (1) are correct, this
energy must go into lifting and acceleration. If the as-
sumptions are false, some fraction may be used to heat,
deform, or accelerate the surroundings. The generation
of seismic waves, shock waves, and crushing or ejection
of wall rock may all be driven by this energy.

Using Fig. 4b as a reference, it is important to note
the following:

1. Energy of lifting is a significant fraction of AA. The
energy of lifting is about 10 J/kg per meter of magma
ascent. If we assume that these mixtures originate at
pressures that are roughly lithostatic for their depth,
the energy required for lifting (shaded area in Fig. 4b)
is about 25-45% of the total isentropic enthalpy loss.

2. Below the fragmentation depth, kinetic energy is
negligible. Conduit models (Wilson et al. 1980; Pa-
pale and Dobran 1993; Mastin 1995b; Papale et al.
1998) calculate ascent velocities of tens of meters per
second or less at depths below that where magma
fragments into a gas—ash mixture. The kinetic energy
of these mixtures (<1 kJ/kg) is insignificant relative
to the isentropic enthalpy loss and small compared to
lifting energy for mixtures that rise hundreds or
thousands of meters.

3. Above the fragmentation depth, efficiency of energy
conversion is controlled largely by conduit geometry.
In conduits that do not flare outward immediately
below the surface, the mixture velocity cannot exceed
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its sonic velocity. If the conduit flares, but not suffi-
ciently to allow the mixture to decompress to atmo-
spheric pressure at the exit, the final velocity will be
supersonic but less than its maximum theoretical
velocity. If the vent flares more than required to reach
atmospheric pressure, normal shocks will develop in
the vent that drop the exit velocity to subsonic values.
These factors tend to constrain exit velocities to sonic
values of roughly 70-150 m/s (Fig. 4a), which are a
fraction of their maximum theoretical values. Cor-
responding kinetic energies (<10 kJ/kg) are also a
small fraction of that available during isentropic
enthalpy loss.

Effect on viscosity

Changes in temperature affect the melt viscosity, which
in turn may affect all other flow properties. Figure 5
illustrates the change in viscosity with pressure of
water-saturated basalt (7;=1150 °C) and rhyolite
(T; =750 °C), respectively, decompressing from p=200
to 0.1 MPa. For basalt, isentropic cooling increases
viscosity by nearly a factor of 15 over its initial value.
But the thermal effect of gas exsolution increases vis-
cosity only about 10% more than the case-2 method that
ignores the energy of exsolution. For rhyolite, the re-
moval of water from the melt during decompression
causes an extreme increase in viscosity (from 6 x 10° Pa s
at p=200 MPa to 1.5x 10'> Pa s at p=1 atm) even
under constant-temperature conditions. Isentropic
cooling increases the melt viscosity by an additional 2.5
orders of magnitude. Isenthalpic heating decreases melt
viscosity by about 0.7 orders of magnitude relative to
that at =750 °C. But in both the isentropic and isen-
thalpic cases, solutions that consider gas exsolution
produce final viscosities that differ by less than 20%
from those that ignore energy of gas exsolution.

Adiabatic, isentropic cooling is most important when
the melt—gas mixture is fragmenting and approaching its
maximum velocity at the top of the conduit. As noted by
Dingwell and Webb (1989), melt will fail brittlely when
the extensional strain exceeds a value (é.,) that can be
accommodated by viscous deformation. Following
Maxwell’s relation,

. G
bt = K ==
M

(29)

where G., is the elastic shear modulus of the material
(equal to about 20 GPa) and K is an empirical constant
(equal to ~0.01; Dingwell and Webb 1989). Extensional
strain within the conduit is probably responsible for
fragmentation of the erupting mixture (Papale 1999).
The beginning of fragmentation may be slightly delayed
by isenthalpic heating below the fragmentation depth.
But once fragmentation begins, acceleration becomes
significant and adiabatic cooling may enhance the
fragmentation process. A 10- to 100-fold increase in
viscosity due to adiabatic cooling at the top of the
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Fig. 4 a Maximum theoretical velocity versus initial pressure for
isentropically decompressed mixtures of water-saturated albite,
basalt, and rhyolite. Compositions of these melts are given in
Table 2. Solid lines give u,,,, calculated using the full solution for
gas exsolution. Dashed line represents u,,,. for albite (7;=900 °C)
using the case-2 solution that ignores the energy of gas exsolution.
For reference, dotted lines give the sonic velocities of these mixtures
at 1 atm pressure, calculated using methods explained in Appendix
D. b Enthalpy loss of the melt-gas mixture described in a during
isentropic decompression to 1 atm. As in a, solid lines give enthalpy
loss using the full solution that considers the energy of gas
exsolution; dashed line gives the enthalpy loss for water-saturated
albite using the case-2 solution that ignores gas exsolution. The
shaded area gives the energy required (gAz) to lift this magma from
its initial position in the Earth’s crust to the surface, assuming
that its initial pressure corresponds to lithostatic pressure at a
given depth and that the lithostatic pressure gradient is 20—
25 MPa/km

Table 2 Compositions of melts used in this paper. Oxide com-
positions are wt% of an anhydrous melt. Basalt is a MORB
composition taken from Table 2 of Dixon et al. (1995). Rhyolite
composition represents a haplogranitic melt (HPGS8) characterized
for its solubility (Holtz et al. 1995) and rheologic properties (e.g.,
Dingwell et al. 1996; Hess and Dingwell 1996)

Property Basalt Albite Rhyolite
Temperature (°C) 1,150 900 750
SiO, 50.8 68.74 76.69
ALO; 13.7 19.44 12.91
Fe,0; 0 0 61
FeO 12.4 0 55
MgO 6.67 0 04
CaO 11.5 0 29
TiO, 1.84 0 1
Na,O 0.68 11.82 4.2
K,0 0.15 0 4.61

initial pressure (p,), MPa

conduit should reduce the critical strain rate by a sim-
ilar amount, causing the melt to break up more thor-
oughly than might be the case under isothermal
conditions.

Summary and discussion

Our main findings are as follows:

e Adiabatic cooling in erupting mixtures can be signif-
icant in cases where there is little friction to impede
flow. But 85-90% of this cooling results from ex-
pansion of gas that exists in the system rather than the
thermal effects of gas exsolution.

e The relatively small effect of gas exsolution energy on
cooling is independent of which model (Sahagian and
Proussevitch; Papale, or Ghiorso and Sack) is used to
calculate exsolution energy.

e Two main factors act to limit the efficiency of erupting
mixtures in converting enthalpy to kinetic energy:
below the fragmentation depth, the limiting factor is
viscous resistance to flow; above the fragmentation
depth, the limiting factor is conduit geometry.

This analysis considers only the effects of gas exso-
lution and expansion on temperature changes. The heat
of crystallization is on the order of several hundred
kilojoules per kilogram (Berman 1988; Ghiorso and
Sack 1995), which is similar in magnitude but opposite
in sign to the heat of gas exsolution (h,—h,). Thus
crystallization of a few weight percent minerals could
increase temperatures by several degrees Celsius, effec-
tively negating the cooling effect of gas exsolution.
Crystallization during ascent in conduits has been
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Fig. 5 a Temperature of decompressing melt—gas mixtures of (1)
water-saturated basalt, initially at 7=1,150 °C (m,,=0.0418), and
(2) water-saturated rhyolite, initially at 7=750 °C (m,,=0.0534),
during decompression from p; =200 MPa to p,=1 atm. The solid
lines represent the full solution for rhyolite under isenthalpic (upper
line) and isentropic (lower line) conditions. The upper and lower
dotted lines represent dh=0 and ds=0 solutions, respectively, for
rhyolite under case-2 conditions that ignore the energy of gas
exsolution. Upper and lower dashed lines represent the full dh=0
and ds=0 solutions, respectively, for basalt. Upper and lower dash-
dotted lines represent the dh=0 and ds=0 solutions, respectively,
for case-2 decompression of basalt. The mixtures contain no
exsolved gas at the initial pressure. Compositions of the melts are
given in Table 2. b Log of the viscosity (1) of a decompressing melt
at the temperature given in a, normalized to the viscosity of the
same melt (y7) at T=T,, as a function of pressure. The line
patterns in b denote the same conditions for decompression as
those in a. Viscosities are calculated using relations in Ryan and
Blevins (1987) for basalt, and Hess and Dingwell (1996) for rhyolite

inferred for sub-Plinian andesitic eruptions (e.g., Gardner
et al. 1998).

Perhaps the greatest thermal effect on eruption pro-
cesses is not the average temperature change but the
concentration of temperature changes in certain parts of
the system. In the shallow vent area, for example, highly

Pressure, MPa

transient pressure drops of a few megapascals may cool
the gas phase by a few hundred degrees before it can
equilibrate with solid particles. The temperature differ-
ence between gas and melt could freeze the rims of ex-
panding pyroclasts and promote their disintegration. In
deep conduits, if all of the heat generated by isenthalpic
decompression were concentrated along conduit margins
where shearing is greatest, the viscosity in those mar-
ginal areas could decrease by multiple orders of mag-
nitude, dramatically reducing flow resistance. For
example, using the isenthalpic rhyolite decompression
scenario illustrated in Fig. 5 and concentrating all the
generated heat into 20% of the magma—gas mixture,
that portion of the mixture would heat up to about
200 °C and its viscosity would decrease by about 4.5
orders of magnitude.

Fujii and Uyeda (1974) argued that instability of this
nature (termed ‘‘thermal runaway’’) may account for
unstable alternations between explosive and effusive
volcanism. Hardee and Larson (1977) found that viscous
shearing could dramatically increase melt viscosity even
in small (<1 m wide), rapidly emplaced dikes and
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conduits in which conductive heat loss to the host rock
was significant. Recent papers have suggested volatile-
dependent viscosity (Wylie et al. 1999) and stick-slip
conditions along the wall of a conduit (Denlinger and
Hoblitt 1999) to explain cycles of effusion and explo-
sions, apparently without consideration of thermal ef-
fects. The process of thermal instability may be highly
significant and merits further study.
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Appendix A: Values of s, — s, derived from Papale
(1997)

Papale (1997) presents a thermodynamic model that
predicts solubility of CO, or H,O in silicate melts as a
function of composition, temperature, and pressure. His
model provides the most accurate prediction available
for water solubility in melts of any composition, and
therefore his thermodynamic relations, including
54 — 5w, may be more accurate than other models.

Papale gives the following expression for the activity
coefficient (y,,) of dissolved water in a melt

n—1

n n
RT Iny, =(1-x,) Zx[ww,« - Z Z XiXjWij

i=1 i=Litw j=it 1 jAw

(A1)

The terms w;; are interaction coefficients, taken from
Ghiorso et al. (1983), and the terms x;, x; are mole
fractions of anhydrous oxides, defined in Ghiorso et al.
(1983). For the interaction coefficients involving water
(w,), Papale derives his own values.

The fugacity of dissolved water in its standard state,
2, is given by Papale as:

Inf? =Inf2(p° T°) /id

o] [ ) Joen

T0

(A2)

where p° and T° are the standard-state pressure and
temperature, 0 Pa and 1,000 K; and v,, is the partial
molar volume of dissolved water. Papale gives an em-
pirically derived value for Inf2(p°, T°) (19.3347), and
uses a 3-D polynomial expression for 7,,, as a function of
p and T, derived from Burnham and Davis (1974), which
can be integrated or differentiated to evaluate the ex-
pressions above.

The chemical potential of dissolved water in the melt
(#,,) 1s defined as:

Jw

fi, = i+ RTInZ"
fe

(A3a)

= @, +RT Iny,x, (A3b)

where [ is the standard-state chemical potential of
water in the melt (i.e., the molar Gibbs free energy of
“pure” dissolved water at p and 7). At saturation,
By =10, and f,=f,~p (the approximation is
made by Papale). Thus (A3a) can be rearranged to
find po:

—0 — p — "0 0
m, = I, —RTlnf—():ug —RTInp+RTInf)(p°, T°)

vy,
vy =T o7 T
v (aT)J dpd

Substituting (A4) and (A1) into (A3b), the chemical
potential of dissolved water can be derived:

P

w
T
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+ Uy dp - ?
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P°

P

(A4)
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Taking —(0g,,/0T), we derive the entropy:
P P
Sy =54 +RInp—RInf)(°,T°) — 3T /ﬁwdp
p
{ / / [ <6vw> }dpdT} —Rlnx, (A6)

The difference 5, —5,, can be derived as:

P
5S¢ — 8 = —Rlnp+RInf; L(p®, T°) + OBT /Dwdp
»°

{/ / {““‘ <8LW) ]dpdT}-l—Rlnxw (A7)

Each of these terms is converted to per-kilogram
values by dividing them by the molecular weight of
water. For pressures of 10'-10° MPa, the order
of magnitude values of the terms on the right side of
Eq. (A7) are 107 10% 10° 102, and 10" J/mol K,
respectively, suggesting that the first two terms domi-
nate.

Papale (1997) also uses a formulation for solubility of
CO,. Using a derivation similar to that above, the
equation of entropy for dissolved CO; has same form as
shown in Eq. (A7) for water. For CO,, each of the terms
in Eq. (A7) should have roughly the same order of
magnitude values as those for water. Therefore we
would expect the exsolution enthalpy, and entropy, for
CO; to be of the same order of magnitude as that for
water.




Appendix B: Calculating dm,,

We begin this derivation by pointing out that the change
in m,, is due entirely to removal of dissolved water in the
melt — the mass of all other components remains con-
stant. The mass fraction of dissolved water in the melt is
m,,, defined as:

LONEIN ~
> M+ M,

i=1

i#w

(BI)

my, =

where M,, is the total mass of dissolved water (in kg) in a
given mass of melt, and M; are the masses of all other
components in the melt. The denominator on the right-
hand side of the equation is the total mass of the melt,
M,y, in kilograms. Differentiating this equation, and
holding the mass of all anhydrous components constant,
we get:

dﬁ’lw — Al _ Mw de — (1 T WIW) de
Mrot M2 tot

tot

(B2)
The term s, can also be differentiated from Eq. (B3)

as follows:

din, = ofph~dp = i, gdp (B3)

which can be substituted into Eq. (B2) and rearranged to
give:

i —dp (B4)

_ Dividing both sides by M;,, and substituting m,, for
Mo/ M,y (the mass of the melt divided by the mass of the
melt + gas system), we get:

mmrhw E
(I =) p

(BS)

dm,, =

Appendix C: Calculating (8hm/8ﬂ71w)dll7w and
(0s,/OM, )dM,

Following regular solution theory (Ghiorso et al. 1983),
the molar enthalpy of a melt is the sum of the partial
molar enthalpies of its components, multiplied by the
mole fraction of each component:

n
ilm = Z xiili
i=1

The partial molar enthalpy of each component is a
function of both the enthalpy per mole of that compo-
nent (e.g., Si0,, TiO,) in its pure form and at a given p
and 7, and the enthalpy of mixing. Similarly, the molar
entropy of a melt, 5, is a weighted sum of its partial
molar components. For convenience, we define the

(C1)
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specific (per-kilogram) enthalpy and entropy of a melt
by a similar formula:

=S i = 3 | M (C2)
=1 = | S M;
j=1
S = Zn:m,si - Z MS (C3)

J=1

where ; is the mass fraction of that component in the
melt. The denominator within the parentheses is the
total mass of the melt, M. R

Differentiating Egs. (C2) and (C3) with respect to M,,
while holding the mass of other components constant,
we obtain:

N 1
On __ (hyy — hy) (C4)
8M¢* Mmr
On _ 1 (o o) (C5)
8Alw Mmt

where £/, and s, are the partial specific enthalpy and
entropy of dissolved water, respectively. We then multiply
these terms by the expression for dM,, [Eq. (B4)] to give:

ahm Y ﬁlw ﬁ

S Nabr, = " P, —h)d C6
asm Y Vhw ﬁ

— de - - —WBw T Om d, C7
(8Mw) (1 - mW)p(s § ) v ( )

Appendix D: Calculation of sonic velocities

Sonic velocities of melt-gas mixtures in Fig. 4a were
calculated from the relation:

(D1)

where C is sonic velocity (m/s), k; is the bulk modulus of
the melt—gas mixture at constant entropy, and p is the
mixture density. [The isentropic bulk modulus, kj, is
related to the more commonly used isothermal bulk
modulus, k7, by the relation k;=(c,/c,)k7]. The isen-
tropic bulk modulus of the mixture is calculated as:

1 ¢ 1—¢

[

(D2)

where k,, and k,, are the isentropic bulk moduli of the
gas and melt, respectively, which are defined as k = p(dp/
dp); (the subscript s indicates constant entropy). At 1 atm,
ko for an ideal gas is simply equal to (c,g/c,,) times
the pressure in Pascals, or [1.23 x (1.013 x 10° Pa)=
1.25 x 10° Pa for H,O gas at T=900 °C]. We use values
of k,, ranging from 1.2 to 1.6 x 10'" Pa, obtained from
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calculations of density and its derivative with respect to
pressure calculated from MELTS. The ¢ is the volume
fraction gas in the mixture, which is calculated from the
mass fractions exsolved gas and melt in the mixture and
their densities. At 1 atm pressure, ¢ is generally above
0.99, meaning that the right-hand term on the right side
of Eq. (D2) is generally insignificant.

The density of the mixture is calculated as:
1_mg mn (D3)
P Py Pm
where the densities of the gas and melt are calculated
using relations in Haar et al. (1984) and Ghiorso and
Sack (1995), respectively.
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